

Jonathan Asaadi Syracuse University 1Jonathan Asaadi Syracuse University 1

Feature Vertex FinderFeature Vertex Finder
A “new” way of finding verticies in LArSoftA “new” way of finding verticies in LArSoft

Jonathan AsaadiJonathan Asaadi
Syracuse UniversitySyracuse University

LASoft MeetingLASoft Meeting
5/19/135/19/13

ArgoNeuT MCArgoNeuT MC

● Vertex finding in the broader reconstruction scheme
– How we do it now

– How I imagine it could be

● Proposal to change RecoBase Vertex object
– Adding vertex “strength” to the Vertex object

● FeatureVertexFinder (I don't do well naming things)

– How it works (a.k.a building on the hard work of others)
● Cluster Finding
● Corner Finding
● 2d / 3d matching

– Preliminary performance plots (still lots of improvements to be made)

– Some plots using vertex strength to show performance
● Backup Slides

(more details about the algorithm than can fit in one talk)

Jonathan Asaadi Syracuse University 2Jonathan Asaadi Syracuse University 2

OutlineOutline

ReconstructionReconstruction
(How we do it now)(How we do it now)

(Part of what is described below is a cheat and an over-simplification...but is more used to illustrate
my point that if we use information differently we can improve our reconstruction)

Right now, in LArSoft, we follow a very linear chain of reconstruction with
one module calling upon a previous module (or maybe a few previous
modules) to reconstruct the next object that gets passed up the chain

An event vertex is reconstructed very late in the chain (mostly taking in
3d objects) and is seldom (if ever) used to inform other reconstruction

Jonathan Asaadi Syracuse University 3Jonathan Asaadi Syracuse University 3

ReconstructionReconstruction
(How I imagine it could be)(How I imagine it could be)

2D 3DImage Techniques

Tracks

Showers

I would like to propose a more “feedback
loop” approach to our reconstruction and

illustrate this through the new vertex
algorithm, FeatureVertexFinder. Reco Attempt

Proto-Object

Reconstructed
Object

Specifically, I think many algorithms (clustering, track finding,
shower finding) would benefit greatly from having a list of vertex
candidates (“proto-verticies”) with various weights assigned to

them

These verticies would help them make intelligent guesses about
the object they are attempting to reconstruct

Jonathan Asaadi Syracuse University 4Jonathan Asaadi Syracuse University 4

ReconstructionReconstruction
(How I imagine it could be)(How I imagine it could be)

Raw Data Wires
Calibrated Data

Image Techniques
- CornerFinder

Could use more...?

Hits Clusters Proto-Vertexing
Produces a list of 2d

& 3d candidates

Pass 1
Tracks

Showers
etc...= simple feed forward technique (like we do now)

= feed back to previous algorithms

= new link in the chain (i.e. FeatureVertexFinder)

During our first pass we make simple objects based on available information.
However, since many of these object made during the first pass can

inform/improve reconstruction algorithms, we identify those links and re-run
reconstruction using this information

= Existing algorithm

= New algorithm

Most of this
talk will

focus on this
new

module

Jonathan Asaadi Syracuse University 5Jonathan Asaadi Syracuse University 5

Better Hits
(e.g. Hits near a vertex may need to be handled differently)

Refine Clusters
(e.g. Clusters that know where the origin may be as input)

I haven't done this yet...just
thinking out loud

Change to RecoBase VertexChange to RecoBase Vertex
As of right now the only 3d vertex class
in LArSoft only has XYZ and ID as
members of its class

I would like to add “strength” to this class

→ I could see this having the vertex
strength defined for each module that
generates 3d verticies (would be up to
the author to tell everyone the scale and
what it means)

→ For FeatureVertexFinder I would use
the same definition I outlined later based
on matches and merges (+ tweaks &
suggestions from others)

double strength() const;

Can I have permission to
Modify RecoBase/Vertex ?

Anything else we should add?

Jonathan Asaadi Syracuse University 6Jonathan Asaadi Syracuse University 6

Feature Vertex FinderFeature Vertex Finder
Easiest method is to show how module works is to step through an example MC event

Step 1: Start with a wire information Step 2: Run the event through a generic
 reconstruction chain up to
 2-d clusters (keep CalWire)

ν+Ar→μ+3p+π++π0

HitFinder (GausHitFinder)

2-d Cluster (dbCluster)

2-d LineFinding (HoughLineFinder)

2-d LineFinding (LineMerger)

Note:
These are
just 2-d
Cluster
modules

ν+Ar→μ+3p+π++π0What I am showing here are reconstructed
hits and the 2d-Clusters from LineMerger

→ In principal you could have used any
 2-d cluster module
→ I chose linemerger because it seemed

 to give me sensible clusters for finding
 a vertex

At this point in the reco chain I run
FeatureVertexFinder

Jonathan Asaadi Syracuse University 7Jonathan Asaadi Syracuse University 7

ArgoNeuT MCArgoNeuT MC

ArgoNeuT MCArgoNeuT MC

Feature Vertex FinderFeature Vertex Finder
ν+Ar→μ+3p+π++π0 At this point FeatureVertexFinder looks at the event in

two ways

(Method 1) 2d/3d Cluster Vertex
- Using the 2d-cluster information and calculating slopes and
 Intercepts in 2d and then matching between planes to form
 3D candidates

(Method 2) 2d/3d Corner Vertex
- 2d “Corner” finding using ConerFindingAlg and matching
 Between planes to form 3d candidates

I'll talk
about each

way
individually

Cluster vertex Corner vertex

Jonathan Asaadi Syracuse University 8Jonathan Asaadi Syracuse University 8

ArgoNeuT MCArgoNeuT MC

ArgoNeuT MCArgoNeuT MC

Feature Vertex FinderFeature Vertex Finder
2-d Slopes2-d Slopes

● For every cluster I take the
hits for that cluster and fit a
1st order polynomial to the
hits (pol1) and save the slope
● I use a fit instead of the reco

cluster slope (dTdW = delta Time
/ delta Wire) because not every
cluster module calculates this

● I also save the start and end
position (wire and time) for
each cluster
● I do this since I expect the

clustering algorithms (at this
point) to get the actual start and
end position switched sometimes

Jonathan Asaadi Syracuse University 9Jonathan Asaadi Syracuse University 9

Now I search for 2-d cluster vertex candidates in each plane

ArgoNeuT MCArgoNeuT MC

Feature Vertex FinderFeature Vertex Finder
2-d Slopes2-d Slopes

(1) Using the slope and the start point of each cluster I calculate all the
intersection points in each plane between all the lines

(I also repeat this procudure using the end points)

Now with a long list of 2-d cluster vertex candidates (wire & time) in
each plane I look for 3-d cluster vertex candidates

Cartoon representation of the Cartoon representation of the
method...method...

Cartoon representation of the Cartoon representation of the
method...method...

ArgoNeuT MCArgoNeuT MC

Jonathan Asaadi Syracuse University 10Jonathan Asaadi Syracuse University 10

Greater details in the backup slides...

(1) (1)

Cartoon representation of the Cartoon representation of the
method...method...

ArgoNeuT MCArgoNeuT MC

Feature Vertex FinderFeature Vertex Finder
Matching between viewsMatching between views

(2) Loop over each 2-d cluster vertex
candidates (channel

1
 and time

1
) and look to

see if there is a corresponding cluster
vertex candidate (channel

2
 and time

2
) in a

different plane and see if the channels
intersect (ChannelsIntersect(C1,C2,Y,Z)).
This gives me a Y and Z coordinate

Finally I require that the time difference
between the two vertex candidates
(abs(time

1
-time

2
)) is within 1.5 times the

expected offset between planes
(TimeOffsetV, TimeOffsetU, TimeOffsetZ)

If the vertex satisfies both these
conditions (ChannelsIntersect and 1.5TimeOffset),
then calculate the vertex X coordinate
(TickstoX)

So now I have a list of 2d/3d cluster
verticies

Real output of Real output of
FeatureVertexFinderFeatureVertexFinder

Zooming in on one view

But we But we
aren't aren't
done done
yet!yet!

(2)

Feature Vertex FinderFeature Vertex Finder
Vertex StrengthVertex Strength

Real output of Real output of
FeatureVertexFinderFeatureVertexFinder

Recall that I have done this
process for both startpoints and
endpoints for every cluster

This means I have to do some
bookkeeping to make sure I remove
duplicate entries (details in the backups)

Now I need to assess how strong
of a candidate each found 3d/2d
vertex found

To do this I come back to the
image techniques employed in

CornerFinderAlg

Jonathan Asaadi Syracuse University 12Jonathan Asaadi Syracuse University 12

Lots more details about the CornerFinder have been given by W. Ketchum and can be found
https://cdcvs.fnal.gov/redmine/attachments/download/9953/CornerFinderIntro.pdf &
https://indico.fnal.gov/getFile.py/access?contribId=1&resId=0&materialId=slides&confId=6845
and another example of it being used by B. Jones for tracks can be found
https://indico.fnal.gov/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=6845

Cartoon representation of Cartoon representation of
the method...the method...Using the image

techniques
described

elsewhere (see
back-up slides) I

find the 2-d
“corner features”

in each plane

This technique finds lots of 2d corner points (wire & time) in each plane

Now I loop over all the corner points in each plane and similar to before keep
only the corner points that match in Wire and Time

(note: I also record the 3d matched corner points strength as defined by the CornerFinderAlg...this is
important for later)

This gives me a list of 2d/3d corner vertices (x, y, z)

Jonathan Asaadi Syracuse University 13Jonathan Asaadi Syracuse University 13

Feature Vertex FinderFeature Vertex Finder
CornerFinderCornerFinder

https://cdcvs.fnal.gov/redmine/attachments/download/9953/CornerFinderIntro.pdf
https://indico.fnal.gov/getFile.py/access?contribId=1&resId=0&materialId=slides&confId=6845
https://indico.fnal.gov/getFile.py/access?contribId=3&resId=0&materialId=slides&confId=6845

Feature Vertex FinderFeature Vertex Finder
A tale of two listsA tale of two lists

2d/3d Corner
Verticies

2d/3d Cluster
Verticies

Now what I have is two lists of 2d/3d vertex candidates (corners
and clusters) found from two different methods

What comes next depends on the length of the cluster vertex list and the proximity
in 3d space (x, y, z in cm) to the verticies from the corner vertex lists

Nitty gritty details can be
found in the back-up slides,
but everything follows this

rough prescription

Jonathan Asaadi Syracuse University 14Jonathan Asaadi Syracuse University 14

Feature Vertex FinderFeature Vertex Finder
A tale of two listsA tale of two lists

2d/3d Corner
Verticies

2d/3d Cluster
Verticies

Nitty gritty details can be found in the back-up slides,
but everything follows this rough prescription

2) Take the merged cluster vertex list and compare it to the corner
vertex list.

→ If there is a corner vertex within 1 cm (*new) in x, y, z of the cluster vertex add +1 to
 the strength
→ I do not merge these vertex candidates...I just use them to add weight to the found
 cluster vertex

3a) If you have > 0 vertex candidates, record all of them
→ EndPoint2d (TimeTick, geo::WireID, strength, Vtx #, View, Total Charge not used)
→ Vertex (xyz, Vtx #)

3b) If you have exactly 0 vertex candidates use a bail/recover
method

→ More on the next slide

0) All vertex candidates start with a strength equal to zero

1) Loop over the cluster vertex list and merge a 3d vertex that is
within 0.5 cm (*new) of another vertex in x, y, and z (has to satisfy all
three spatial directions)

→ When you merge two vertex candidates +1 to the vertex strength
→ Merging right now is the dumb (m+n)/2...needs to be improved

Note: Bug fix since last week now has the strength reporting “reasonable” numbers

Jonathan Asaadi Syracuse University 15Jonathan Asaadi Syracuse University 15

Feature Vertex FinderFeature Vertex Finder
BailoutBailout

So if somehow after looking for a cluster vertex and/or a corner
vertex we still haven't found at least one 3d proto-vertex we employ
a series of bail out tactics

Bail Out Strategy 1:
Take the start point and end point of the
longest cluster in each plane and try to
match this 2d point to a corresponding
3d corner point projected down into the
plane (if it matches to many 3d feature
points use the strongest 3d feature
point).

→ If you find a match take the strongest
point and construct a 2d/3d proto-vertex from
the 3d feature point (this way I can have a point
in all planes that is consistent) strength 1

Note: All these verticies will have strength 0 or 1

Jonathan Asaadi Syracuse University 16Jonathan Asaadi Syracuse University 16

Feature Vertex FinderFeature Vertex Finder
BailoutBailout

Bail Out Strategy 2 (only used if
strategy 1 fails):
Take the strongest 3d feature point found
and project it down into 2d

→ Take this point and construct a
2d/3d proto-vertex strength 0

Bail Out Strategy 3 (only used if
strategy 1 & 2 fails):
Take the start point of the longest
cluster in each plane as the 2d vertex
(regardless of if they match between
views)

→ Use geometry to find the nearest
3d point between the planes strength 0

Preliminary Performance PlotsPreliminary Performance Plots

How well does FeatureVertexFinder do?
→ Look at 400 Genie events generated in ArgoNeuT

- Reconstructed: GausHitFinder → dBCluster→HoughLineFinder→LineMerger

→ First look at all reconstructed vertex candidates created
- Some good stuff...lots of interesting noise

→ Then look to see what happens as we increase the strength of
the 2d vertex reconstructed

Jonathan Asaadi Syracuse University 18Jonathan Asaadi Syracuse University 18

Preliminary Performance PlotsPreliminary Performance Plots
All reconstructed verticiesAll reconstructed verticies

For this sample of 400
events (low statistics):

I reconstruct a vertex
within 1 cm in wire
distance and time tick
(converted to cm) of
the true vertex in both
planes ~70% of the
time

I reconstruct a 3d
vertex within 1 cm in
x, y, and z
simultaneously of the
true vertex only 60%
of the time (my
resolution in Y and Z
seem to really lower
my efficiency)

X offset because I need to
handle ArgoNeuT's trigger

offset properly still

Remember that this is for
all reconstructed vertex

candidates

(~ 8.5 candidates per
event for this sample)

Jonathan Asaadi Syracuse University 19Jonathan Asaadi Syracuse University 19

All reconstructed verticiesAll reconstructed verticies

Jonathan Asaadi Syracuse University 20Jonathan Asaadi Syracuse University 20

Preliminary Performance PlotsPreliminary Performance Plots

Zooming in

Profile

Preliminary Performance PlotsPreliminary Performance Plots

Zooming in

Profile

Jonathan Asaadi Syracuse University 21Jonathan Asaadi Syracuse University 21

Preliminary Performance PlotsPreliminary Performance Plots

Zooming in

Profile

Jonathan Asaadi Syracuse University 22Jonathan Asaadi Syracuse University 22

Preliminary Performance PlotsPreliminary Performance Plots

Jonathan Asaadi Syracuse University 23Jonathan Asaadi Syracuse University 23

Taste of everything we find...Taste of everything we find...

It's true that we do find the
primary vertex in nice simple

events like this one

But there are also
events like this
where we find lots
of proto-verticies

Don't want to
throw away this
information
→ Some of this is
a function of what
clustering
algorithm you
chose

→There is
information in this
that tells we likely
have a shower in
this event

S
am

e e v
en

t

Taste of everything we find...Taste of everything we find...

Again, taking everything can be bad... But can also be good...

What I'd really like to be able to do is to make a
plot of the 3d vertex “strength”

→ Then I could cut / require the 3d vertex strength to be above a
certain number
→ I could take the strongest vertex as the “primary” vertex....or
code it to be with some likelihood
→ However the RecoBase Vertex does not have this member

EndPoint2d Strength

More Performance PlotsMore Performance Plots
In lieu of modifying RecoBase/Vertex, what if
I only plot the 2d results for EndPoint2d
verticies (which all must correspond to a 3d
vertex) above a certain strength
(say, >= 1, 2, 3)

Might be ok if I was going for purity...but not very good for efficiency

● FeatureVertexFinder is in LArSoft right now along with
FeatureVertexFinderAna (used to produce all the plots you see in this
talk)
– You should check it out and give it a whirl

– Let me know problems and improvements you think are needed (there are lots...)

● Planned improvements / studies
– Producing plots in MicroBooNE

● Lower energy neutrino beam might have things look better
● Utilizing 3 plane geometry to hopefully find the primary vertex more reliably

– Study the difference given various clustering algorithms
● HoughLines, FuzzyCluster, dBCluster, etc...

– Work on tuning merging / matching parameters
● Might have to depend on the topology of the event...

– Want to incorporate proximity to hits as a way of increasing the vertex strength
● Need to be smart about this so as not to miss neutral current events

– Open to collaboration with others on the code / suggestions to making our
reconstruction work more dynamically

● Formal request to change RecoBase/Vertex members

ConclusionsConclusions

Jonathan Asaadi Syracuse University 27Jonathan Asaadi Syracuse University 27

Back-up Slides

Feature Vertex FinderFeature Vertex Finder
2-d Slopes2-d Slopes

BELOW IS THE CODE FOR CALCULATING INTERCEPTS FROM SLOPES

 // ##

// ### Now we try to find a 2-d vertex in the plane we are currently looking in ###
// ##
for (unsigned int n = nClustersFound; n > 0; n--)

{
// ###
// ### Looping over the clusters starting from the ###
// ### first cluster and checking against the nCluster ###
// ###
for (unsigned int m = 0; m < n; m++)

{
// ###
// ### Checking to make sure clusters are in the same view ###
// ###
if(Clu_Plane[n] == Clu_Plane[m])

{
// --- Skip the vertex if the lines slope don't intercept ---
if(Clu_Slope[m] - Clu_Slope[n] == 0){break;}
// ==
// === X intersection = (yInt2 - yInt1) / (slope1 - slope2) ===
float intersection_X = (Clu_Yintercept[n] - Clu_Yintercept[m]) / (Clu_Slope[m] - Clu_Slope[n]);
// ==
// === Y intersection = (slope1 * XInt) + yInt1 ===
float intersection_Y = (Clu_Slope[m] * intersection_X) + Clu_Yintercept[m];
// ### Filling the vector of Vertex Wire, Time, and Plane ###
// ---
// --- Skip this vertex if the X and Y intersection is outside the detector ---
// --- using geom->Nwires(plane,tpc,cyrostat) & detprop->NumberTimeSamples() ---
// ---
if(intersection_X > 1 && intersection_Y > 0 &&
 (intersection_X < geom->Nwires(Clu_Plane[n],0,0) || intersection_X < geom->Nwires(Clu_Plane[m],tpc,cstat)) &&
 intersection_Y < detprop->NumberTimeSamples())

{
vtx_wire.push_back(intersection_X);
vtx_time.push_back(intersection_Y);
vtx_plane.push_back(Clu_Plane[m]);
n2dVertexCandidates++;
}//<---End saving a "good 2d vertex" candidate

// ==
// === X intersection = (yInt2 - yInt1) / (slope1 - slope2) ===
float intersection_X2 = (Clu_Yintercept2[n] - Clu_Yintercept2[m]) / (Clu_Slope[m] - Clu_Slope[n]);
// ==
// === Y intersection = (slope1 * XInt) + yInt1 ===
float intersection_Y2 = (Clu_Slope[m] * intersection_X) + Clu_Yintercept2[m];
// ##
// ### Filling the vector of Vertex Wire, Time, and Plane ###
// ##
// ---
// --- Skip this vertex if the X and Y intersection is outside the detector ---
// --- using geom->Nwires(plane,tpc,cyrostat) & detprop->NumberTimeSamples() ---
// ---
if(intersection_X2 > 1 && intersection_Y2 > 0 &&
 (intersection_X2 < geom->Nwires(Clu_Plane[n],0,0) || intersection_X2 < geom->Nwires(Clu_Plane[m],tpc,cstat)) &&
 intersection_Y2 < detprop->NumberTimeSamples())

{

vtx_wire.push_back(intersection_X2);
vtx_time.push_back(intersection_Y2);
vtx_plane.push_back(Clu_Plane[m]);
n2dVertexCandidates++;
}//<---End saving a "good 2d vertex" candidate

}//<---End making sure we are in the same plane
}//<---End m ++ loop

}//<--- End n-- loop

Checking to make sure
the verticies are in the

same plane

Calculate the x (wire) and
y (time) of the intersection
point for the start point of
the cluster and the end

point of the cluster

then just make sure the
vertex makes sense
(inside the detector)

Feature Vertex FinderFeature Vertex Finder
Removing DuplicatesRemoving Duplicates

// ###
// ### Now we need to make sure that we remove duplicate verticies ###
// ### just in case we have any in our list of n3dVertex ###
// ###

double x_3dVertex_dupRemoved[100000] = {0.}, y_3dVertex_dupRemoved[100000] = {0.}, z_3dVertex_dupRemoved[100000] = {0.};
int n3dVertex_dupRemoved = 0;

for(size_t dup = 0; dup < n3dVertex; dup ++)
{
float tempX_dup = x_3dVertex[dup];
float tempY_dup = y_3dVertex[dup];
float tempZ_dup = z_3dVertex[dup];

bool duplicate_found = false;

for(size_t check = dup+1; check < n3dVertex; check++)
{

// ###
// ### I am going to call a duplicate vertex one that matches in x, y, and z ###
// ### within 0.1 cm for all 3 coordinates simultaneously ###
// ###
if(std::abs(x_3dVertex[check] - tempX_dup) < 0.01 && std::abs(y_3dVertex[check] - tempY_dup) < 0.01 &&
 std::abs(z_3dVertex[check] - tempZ_dup) < 0.01)
 {

duplicate_found = true;

}//<---End checking to see if this is a duplicate vertex

}//<---End check for loop

// ##
// ### If we didn't find a duplicate then lets save this 3d vertex as ###
// ### a real candidate for consideration ###
// ##
if(!duplicate_found)

{
x_3dVertex_dupRemoved[n3dVertex_dupRemoved] = tempX_dup;
y_3dVertex_dupRemoved[n3dVertex_dupRemoved] = tempY_dup;
z_3dVertex_dupRemoved[n3dVertex_dupRemoved] = tempZ_dup;

n3dVertex_dupRemoved++;
}

}//<---End dup for loop

Note:
Right now I consider a

duplicate vertex any two 3d
verticies that are within 0.01

cm in x, y, and z
simultaneously

Feature Vertex FinderFeature Vertex Finder
A tale of two listsA tale of two lists

double TwoDvertexStrength = 0;
 // ### Case 1...only one 3d vertex found ###
 if (n3dVertex_dupRemoved == 1)

{
// ##############################

 // ### Looping over cryostats ###
 // ##############################
 for(size_t cstat = 0; cstat < geom->Ncryostats(); ++cstat)
 {
 // ##########################
 // ### Looping over TPC's ###
 // ##########################
 for(size_t tpc = 0; tpc < geom->Cryostat(cstat).NTPC(); ++tpc)

{
 // #################################

// ### Loop over the wire planes ###
// #################################
for (size_t i = 0; i < geom->Cryostat(cstat).TPC(tpc).Nplanes(); ++i)

{
double xyz[3] = {x_3dVertex_dupRemoved[0], y_3dVertex_dupRemoved[0], z_3dVertex_dupRemoved[0]};
// ##
// ### Give the current 3d vertex found a strength of 1 ###
// ### We will add +1 to it for each 3d feature that is ###
// ### near by it in x, y, z space ###
// ##
TwoDvertexStrength = 1;

// ###
// ### Does this point correspond to a 3d-Feature Point? ###
// ### Loop over all the feature points ###
// ###
for (int a = 0 ; a < n3dFeatures; a++)

{
// ###
// ### If you find a feature point within 3 cm of the vertex ###
// ### add a point to the vertex strength ###
// ###
if (std::abs(xyz[0] - x_feature[a]) < 3 &&
 std::abs(xyz[1] - y_feature[a]) < 3 &&
 std::abs(xyz[2] - z_feature[a]) < 3)

{
TwoDvertexStrength++;
}

}//<---End a for loop

double EndPoint2d_TimeTick = detprop->ConvertXToTicks(xyz[0],i, tpc, cstat);

int EndPoint2d_Wire = geom->NearestWire(xyz , i, tpc, cstat);
int EndPoint2d_Channel = geom->NearestChannel(xyz, i, tpc, cstat);
geo::View_t View = geom->View(EndPoint2d_Channel);
geo::WireID wireID(cstat,tpc,i,EndPoint2d_Wire);
// ### Saving the 2d Vertex found ###
recob::EndPoint2D vertex(EndPoint2d_TimeTick , //<---TimeTick

 wireID , //<---geo::WireID
 TwoDvertexStrength , //<---Vtx strength (JA: ?)
 epcol->size() , //<---Vtx ID (JA: ?)
 View , //<---Vtx View
 1); //<---Total Charge (JA: Need to figure this one?)

epcol->push_back(vertex);
}//<---End loop over Planes

}//<---End loop over tpc's
}//<---End loop over cryostats

// ############################
// ### Saving the 3d vertex ###
// ############################
double xyz2[3] = {x_3dVertex_dupRemoved[0], y_3dVertex_dupRemoved[0], z_3dVertex_dupRemoved[0]};
recob::Vertex the3Dvertex(xyz2, vcol->size());
vcol->push_back(the3Dvertex);

}//<---End Case 1, only one 3d Vertex found

This is the code I use when
after searching for for cluster

vertex candidates I have
only found == 1 3d vertex

By default this only has
strength = 1, but if it

matches within 3cm of a
corner vertex it gets +1 to

the strength

I simply take this vertex,
project down into 2-d and

record the point

Feature Vertex FinderFeature Vertex Finder
A tale of two listsA tale of two lists

if (n3dVertex_dupRemoved > 1)
{
TwoDvertexStrength = 1;
//std::cout<<" ### In case 2 ###"<<std::endl;
// ##
// ### Setting a limit to the number of merges ###
// ### to be 3 times the number of 3d verticies found ###
// ##
int LimitMerge = 3 * n3dVertex_dupRemoved;
// ### Trying to merge nearby verticies found ###
for(int merge1 = 0; merge1 < n3dVertex_dupRemoved; merge1++)

{
for(int merge2 = n3dVertex ; merge2 > merge1; merge2--)

{
double temp1_x = x_3dVertex[merge1];
double temp1_y = y_3dVertex[merge1];
double temp1_z = z_3dVertex[merge1];

double temp2_x = x_3dVertex[merge2];
double temp2_y = y_3dVertex[merge2];
double temp2_z = z_3dVertex[merge2];

if(temp1_x == 0 || temp1_y == 0|| temp1_z == 0 ||
 temp2_x == 0 || temp2_y == 0 || temp2_z == 0) {continue;}

// ### Merge the verticies if they are within 1.5 cm of each other ###
if ((std::abs(temp1_x - temp2_x) < 1.0 && temp1_x != 0 && temp2_x !=0) &&
 (std::abs(temp1_y - temp2_y) < 1.0 && temp1_y != 0 && temp2_y !=0) &&
 (std::abs(temp1_z - temp2_z) < 1.0 && temp1_z != 0 && temp2_z !=0) &&
 nMerges < LimitMerge)
 {

//std::cout<<" Yup, I am going to merge these! "<<std::endl;
//std::cout<<" I've now performed a merge "<<nMerges<<" times"<<std::endl;
//std::cout<<"Merging"<<std::endl;
//std::cout<<"n3dVertex = "<<n3dVertex<<std::endl;
nMerges++;
// ### Zero the vertex that I am merging ###
x_3dVertex[merge2] = 0.0;
y_3dVertex[merge2] = 0.0;
z_3dVertex[merge2] = 0.0;

n3dVertex_dupRemoved++;

// ### Add the merged vertex to the end of the vector ###
x_3dVertex[n3dVertex_dupRemoved] = (temp1_x + temp2_x)/2;
y_3dVertex[n3dVertex_dupRemoved] = (temp1_y + temp2_y)/2;
z_3dVertex[n3dVertex_dupRemoved] = (temp1_z + temp2_z)/2;

// ##
// ### If we merged the verticies then increase its relative strength ###
// ##
TwoDvertexStrength++;

}//<---End merging verticies
}//<---End merge2 loop

}//<---End merge1 loop

Looping over the list of cluster
verticies to look for things to merge

Merging if they are within 1.5 cm in
x, y, and z

Zeroing the vertex you've just
merged (these are removed from the

list at a step not shown here)

Dumb (x+y)/2 merge

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

